
A Linux-Based Implementation of a Middleware Model Supporting
Time-Triggered Message-Triggered Objects

Stephen F. Jenks, Kane Kim,
Emmanuel Henrich, Yuqing Li,

Liangchen Zheng

Univ. of California, Irvine
{sjenks, khkim, ehenrich, yuqingl,

lzheng}@uci.edu

Moon H. Kim
KonKuk University, Korea

mhkim@konkuk.ac.kr

Hee-Yong Youn
SungKyunKwan Univ., Korea

youn@ece.skku.ac.kr

Kyung Hee Lee,
Dong-Myung Seol

ETRI, Korea
{kyunghee, dmsul}

@etri.re.kr

Abstract
Programming and composing deterministic distrib-

uted real-time systems is becoming increasingly impor-
tant, yet remains difficult and error-prone. An innova-
tive approach to such systems is the general-form time-
liness-guaranteed design paradigm, which is the basis
for the Time-triggered Message-triggered Object
(TMO) programming and system specification scheme.
This approach was originally developed for Windows
programming environments and operating systems.
This paper describes the techniques needed to make
TMO support the Linux operating system and reports
the resulting performance characteristics.

1. Introduction

Distributed real-time (RT) applications have be-
come common and essential recently, yet the state of
the art in engineering large-scale distributed RT sys-
tems remains inadequate. One of the major challenges
is the difficulty of programming such applications
while maintaining timeliness guarantees.

Since 1992, co-author Kane Kim and his research
collaborators have been establishing an RT distributed
computing (DC) object programming model. The pro-
ject started with the skeleton of a concrete syntactic
structure and execution semantics of a high-level RT
DC object named the Time-triggered Message-
triggered Object (TMO) [1-4]. The TMO program-
ming and specification scheme has been enhanced in
several steps along with supporting tools (kernel, mid-
dleware, API, specification, etc) since then.

To enable programming and execution of TMOs, a
middleware model/architecture called the TMOSM
(TMO Support Middleware) that provides execution
support mechanisms and can be easily adapted to a

variety of commercial, industry standard ker-
nel+hardware platforms was established [3, 5].

Prototype implementations of TMOSM were first
built on the Windows XP/2000/NT family of (OS)
system kernel platforms [5]. TMOES/AnyORB/NT
[6] is another prototype implementation realized in the
form of a CORBA service that runs on platforms
equipped with Windows NT and an ORB (object re-
quest broker) and supports CORBA-compliant applica-
tion TMOs. A Windows CE based prototype of
TMOSM has also been developed. To enhance the
appeal of TMO to many segments of the RT comput-
ing system engineering community, an early effort to
support TMOs on Linux platforms was undertaken by
several researchers [7]. The current Linux adaptation,
described here, is significantly different from that ear-
lier prototype.

This paper describes the techniques used to en-
hance the portability of the well-established real-time
middleware model, TMOSM, as well as the techniques
for adapting TMOSM to the Linux OS kernel platform.
The paper starts with an overview of TMOSM in Sec-
tion 2. Section 3 introduces the enhanced TMOSM,
which consists of two layers, the TMOSM Main Layer
and the Kernel Adaptation Layer, unlike the previous
monolithic-structured TMOSM. The two-layer struc-
ture eases porting of TMOSM to different OS kernel
platforms. Section 4 discusses the boundaries between
the two layers that have evolved to keep one common
Main Layer in the course of developing the Linux-
based prototype. Windows provides a somewhat
richer set of kernel services. Specific differences in
provided services were encountered in the areas of
thread management, memory management, and sched-
uling. That section outlines how these differences
were addressed and what performance impacts they
have on the performance of TMOSM which facilitates

the powerful approach to RT object-oriented DC pro-
gramming.

Section 5 reports the success of this conversion ef-
fort and some performance behavior observed from the
Linux-based prototype of TMOSM. With the avail-
ability of TMOSM on Windows XP, Window CE, and
Linux, a capable, cross-platform RT DC programming
environment is available to support advanced distrib-
uted RT system engineering
(http://dream.eng.uci.edu/TMOdownload/).

2. TMOSM description and requirements

In the TMO programming model, RT systems are
structured as networks of distributed computing (DC)
objects. These DC objects specify their timing
requirements through mechanisms which are intuitive
and simple to use and yet possess strong expressive
power. These timing specifications are interpreted by
the DC resource management component of the
TMOSM. The TMO timing specification model
allows programmers to specify start-time-windows and
completion deadlines of RT computation-segments,
rather than simplistically specifying priority values.
After all, it is natural for RT application programmers
to think about start-time-windows and completion
deadlines rather than fragile priority schemes [8]. In
addition, programmers specify deadlines for result
arrival in remote method calls, as depicted in Figure 1.
This enables systematic composition of higher-level
services with timeliness assurances from lower-level
services.

TMO programming does not require a new lan-
guage or compiler. Instead, an execution engine such
as TMOSM provides execution support services which
can be invoked directly or indirectly via application
programming interfaces (APIs). TMOSM uses well-
established services of commodity OS kernels, e.g.,
process and thread support services, short-term sched-
uling services, and low-level communication protocols,
in a manner transparent to the application programmer
[5, 9]. The TMOSM architecture was devised to con-
tribute to simplifying the analysis of the execution time
behavior of application TMOs running on TMOSM.
As mentioned earlier, TMOSM has been found to be
easily adaptable to commercial hardware + kernel plat-
forms, e.g., PCs or similar hardware with Windows
XP, Windows CE, or Linux. A prototype implementa-
tion on Windows XP/2000/NT, TMOSM/XP, was de-
veloped [5]. Our experiences indicate that even this
middleware extension of a general-purpose OS (Win-
dows XP) can support application actions with the
10ms-level timing accuracy. TMOES/AnyORB/NT

[9] is another prototype implementation realized in the
form of a CORBA service that runs on platforms
equipped with Windows NT and an ORB (object re-
quest broker) and supports CORBA-compliant applica-
tion TMOs. A Windows CE based prototype of
TMOSM has also been developed and under continu-
ous optimization with the goal of supporting applica-
tion actions with better-than-10ms-level timing accu-
racy.

A friendly programming interface wrapping the
execution support services of TMOSM has also been
developed and named the TMO Support Library
(TMOSL) [1, 5]. It consists of a number of C++
classes and approximates a programming language
directly supporting TMO as a basic building block.
The programming scheme and supporting tools have
been used in a broad range of basic research and appli-
cation prototyping projects in a number of research
organizations and also used in an undergraduate course
on RT DC programming at UCI for about three years
(http://dream.eng.uci.edu/eecs123/SERIOUS.HTM).
TMO facilitates a highly abstract programming style
without compromising the degree of control over tim-
ing precisions of important actions.

2.1. TMO structure and semantics
TMO is a natural, syntactically minor, and seman-

tically powerful extension of conventional object struc-
ture. As depicted in Figure 2, the basic TMO structure
consists of four parts:

ODS-sec: Object-data-store section. This section
contains the data-container variables shared between
methods of a TMO. Variables are grouped into ODS
segments (ODSSs) which are the units that can be
locked for exclusive use by a TMO method in execu-
tion. Scheduling and access control protect mutual
exclusion.

Object Data Store

Method2

Client Object

Object Data Store

Method1

Server Object

Method7

Guaranteed Completion Time
(GCT) advertised
together with MIR

Domain of
communication
infrastructure

Deadline for Result
Arrival (DRA)

imposed by Client

Figure 1. Client deadline vs. server GCT
(adapted from [1])

EAC-sec: Environment access capability
section. These “gate objects” provide efficient
call-paths to remote object methods, real-time
multicast and memory replication channels
(RMMCs), and I/O device interfaces.

SpM-sec: Spontaneous method section.
These are time-triggered methods that become
alive at specified times.

SvM-sec: Service method section. These
provide service methods which can be called by
other TMOs.

Major features are summarized below.
(1) Distributed computing component: The

TMO is a distributed computing component and
thus TMOs distributed over multiple nodes may
interact via remote method calls. To maximize
the concurrency in execution of client methods in
one node and server methods in the same node or
different nodes, client methods are allowed to
make non-blocking service requests to service
methods. In addition, TMOs can interact by ex-
change of messages over RMMCs.

(2) Clear separation between two types of
methods: The TMO may contain two types of meth-
ods, time triggered (TT) methods (spontaneous meth-
ods or SpMs), which are clearly separated from the
conventional service methods (SvMs). The SpM exe-
cutions are triggered when the RT clock reaches time
values determined at the design time. On the contrary,
SvM executions are triggered by calls from clients that
are transmitted by the execution engine in the form of
service request messages. Moreover, actions to be
taken at real times, which can be determined at the
design time, can appear only in SpMs.

Triggering times for SpMs must be fully specified
as constants during the design time. Those RT con-
stants as well as related guaranteed completion times
(GCTs) of the SpM appear in the first clause of an
SpM specification called the autonomous activation
condition (AAC) section. An example of an AAC is
"for t = from 10am to 10:50am every 30min start-
during (t, t+5min) finish-by t+10min" which has the
same effect as {"start-during (10am, 10:05am) finish-
by 10:10am", "start-during (10:30am, 10:35am) finish-
by 10:40am”}.

(3) Basic concurrency constraint (BCC): This
rule prevents potential conflicts between SpMs and
SvMs and reduces the designer's efforts in guarantee-
ing timely service capabilities of TMOs. Basically,
activation of an SvM triggered by a message from an
external client is allowed only when potentially con-
flicting SpM executions are not active. An SvM is
allowed to execute only when an execution time-
window big enough for the SvM exists and does not

overlap with the execution time-window of any SpM
that accesses the same ODSS data as the SvM. How-
ever, the BCC does not stand in the way of either con-
current SpM executions or concurrent SvM executions.

(4) Guaranteed completion time (GCT) of the
server (i.e., an SvM of a server TMO) and the result
return deadline imposed by the client: The TMO in-
corporates deadlines in the most general form. Basi-
cally, for output actions and method completions of a
TMO, the designer guarantees and advertises execu-
tion time-windows bounded by start times and comple-
tion times. In addition, deadlines can be specified in
the client's calls for service methods for the return of
the service results.

2.2. TMOSM Architecture
The TMO Support Middleware (TMOSM) con-

sists of a number of virtual machines (VMs), each
managing a set of threads and using them to perform
certain specialized functions as parts of executing
TMOs. See Figure 3. To make VMs co-exist on top
of a commodity kernel, TMOSM contains one more
component, which can be viewed as the innermost core
and is a super-micro thread called the WTST (Watch-
dog Timer & Scheduler Thread). It is a “super-thread”
in that it runs at the highest possible priority level. It is
also a "micro-thread" in that it manages the scheduling
/ activation of all VMs which in turn operate other
threads in TMOSM. Even those threads created by the
node OS before TMOSM starts are executed only if
WTST allocates some time-slices to them. Therefore,

ODSS
1

ODSS
2

Name of TMO

Object Data Store (ODS)

Time-triggered (TT)
Spontaneous Methods

(SpM's)

Message-triggered
Service Methods

(SvM's)

Service Request
 Queues

Client
TMO's

Capabilities for accessing
other TMO's and network
environment incl . logical
multicast channels, and
I/O devices

EAC

Reservation Q

SvM 2

SpM 2

SvM 1

SpM 1

concurrency
control

Deadlines From SvM's , SpM's

AAC

AAC

•
•

•
• "Absolute time

domain"

"Relative time
domain"

• •

• • •

Figure 2. Basic TMO structure (from [2])

WTST is in control of the processor and memory re-
sources with the cooperation of the node OS kernel.

WTST leases processor and memory resources to
three VMs in a time-sliced and periodic manner. Each
VM can be viewed conceptually as being periodically
activated to run for a time-slice. Each VM is responsi-
ble for a major part of the functionality of TMOSM.
Each VM maintains a number of application threads.
In fact, whenever WTST assigns a time-slice to a VM,
the VM in turn passes the time-slice onto one of the
application threads that belong to it. The component in
each VM that handles this “time-slice relay” is the ap-
plication thread scheduler. For example, VM-A has
the application-thread-scheduler VM-A-Scheduler.
The application thread scheduler is actually executed
by WTST. To be more precise, at the beginning of
each time-slice, a timer-interrupt results in WTST be-
ing awakened. WTST then determines which VM
should get this new time-slice. If VM-A is chosen,
WTST executes VM-A-Scheduler and as a result, an
application thread belonging to VM-A runs for a time-
slice as WTST enters into the event-waiting mode.

The set of VMs is fixed at the TMOSM start time.
One iteration of the execution of a specified set of
VMs is called a TMOSM cycle. For example, one
TMOSM cycle may be: VCT VMAT VAT VMAT.
The following three VMs handle the core functions:

 (1) VCT (VM for Communication Threads): The
application threads maintained by this VM are those
dedicated to handling the sending and receiving of
middleware messages. Middleware messages are ex-
changed through the communication network among
the middleware instantiations running on different DC
nodes to support interaction among TMOs. Therefore,
these application threads are called
communication threads and denoted
as CTs in Figure 3. A communica-
tion thread also distributes middle-
ware messages coming through the
network to their destination threads,
typically belonging to another VM
discussed below.

 (2) VMAT (VM for Main Ap-
plication Threads): The application
threads maintained by this VM are
those dedicated to executing methods
of TMOs with maximal exploitation
of concurrency. Those application
threads are called main application
threads and denoted as MATs in Fig-
ure 3. Normally to each execution of
a method of an application TMO is
dedicated a main application thread.
In principle, TMO method executions

may proceed concurrently whenever there are no data
conflicts among the method executions. Every time-
slice not used by the other VMs is normally given to
this VM. In every one of our prototype implementa-
tions of TMOSM, the application thread scheduler in
VMAT uses a kind of a deadline-driven policy for
choosing a main application thread to receive the next
time-slice.

 (3) VAT (VM for Auxiliary Threads): This VM
maintains a pool of threads which are called auxiliary
threads and denoted as ATs in Figure 3. Some auxil-
iary threads are designed to be devoted to controlling
certain peripherals under orders from TMO methods
(executed by main application threads). Others wait
for orders for executing certain application program-
segments and such orders come from main application
threads in execution of TMO methods. Use of this
VAT has been motivated partly by the consideration
that it should be easier to analyze the temporal predict-
ability of the application computations handled by each
VM, i.e., those handled by VMAT and those by VAT,
than to analyze the temporal predictability of the appli-
cation computations when there is no VAT and thus
VMAT alone handles the combined set of application
computations.

Also, WTST provides the services of checking for
any deadline violations and if a violation is found, it
provides an exception signal to the user.

We believe that structuring of VMs as periodic
VMs is a fundamentally sound approach which leads
to easier analysis of the worst-cast time behavior of the
middleware without incurring any significant perform-
ance drawback.

Figure 3. TMOSM architecture

Logical connections ⊃ Remote TMO Calls, RMMCs

WTST

Communication Network

COTS OS platform

VMAT

RT Clock and
Interval Timer

Activate thread
Message

Thread

Virtual
MachineTMOSM

TMO TMO TMO

Application •••

ATAT

VAT

other
processes

⊗

⊗ ⊗
SpM ThrSvM Thr

••
•

••
•

VCT

CT
CT

⊗

3. Kernel Adaptation Layer

The Kernel Adaptation Layer (KAL) in TMOSM
provides to the rest of TMOSM, the TMOSM Main
Layer, an abstract interface that wraps the services of
the underlying OS kernel in a form convenient for use
by the Main Layer and the associated libraries. See
Figure 4. The code of TMOSM is thus divided into
two parts, TMOSM-KAL module and TMOSM-Main
module. The KAL module contains all OS-dependent
and language-dependent code. TMOSM-Main does
not directly make system calls to the OS, instead it
invokes corresponding KAL operations.

KAL provides APIs for:
(1) thread management,
(2) event handling,
(3) communications,
(4) heap memory acquisition,
(5) timer management,
(6) global time operations, and
(7) error reporting.
These abstractions are then implemented using OS
kernel services, as described in Section 4. Communi-
cation services are a wrapper around sockets, while
error reporting simply returns the last error. The other
APIs are examined below.

Thread management: KAL provides a thread ab-
straction and operations to create, terminate, suspend,
and resume threads, as well as manipulate a thread’s
priority. The suspend and resume operations are used
by WTST (running at the highest priority) to manage
the timing of application and other threads by enabling
them during their permitted execution time, and sus-
pending them when their time expires. The priority
interface allows thread priority to be set and queried.
Rather than an arbitrary range of priorities, the API
defines highest, high, medium, and low settings. Since
only the WTST runs at the highest priority, it preempts
all others in order to manage execution of the latter.

Events: KAL provides events, which are used to
synchronize threads. Events can be created, deleted,
set (signaled), and reset. Threads can wait for one or
more events to be set. The wait operations involve
timeout value parameters and thus the amount of
blocking that threads may experience can be controlled
by design. Events may be “automatic,” which means
they are automatically reset when they activate a
thread, or they may be manually reset.

Timers: Timer objects are programmable timers
that signal an event when their specified interval ex-
pires. Timers may be programmed to signal once or
periodically. Currently TMOSM uses a timer to
awaken the WTST every three milliseconds.

Time service: This interface provides the global
time reference and a sleep function that suspends the
calling thread for a specified duration. The precision
of the global time base offered can also be queried.

Heap memory: The memory pool interface allows
TMOSM to create a heap region and destroy the allo-
cated heap region.

4. TMOSM/Linux implementation details

Development of a KAL/Linux that bridges the
TMOSM Main Layer and the Linux kernel platform
involved resolving a few non-trivial issues. Beyond
the OS differences, the KAL also hides language and
compiler differences. For example, a 64-bit integer is
of type int64 in Microsoft Visual C++, but it is a long
long in the Gnu C Compiler (gcc). The KAL provides
abstract types that hide these details.

4.1. Threads
On the basis of portability and programmability

considerations, the POSIX thread (pthread) Library
was used in the implementation of the thread manage-
ment services of the KAL/Linux. The pthread Library
provides APIs for thread creation and deletion, and
some APIs for scheduling settings, e.g. APIs for
changing the priority of a thread. However, it does not
provide APIs for suspending and resuming of one
thread by another thread as required by KAL and pro-
vided by the Windows APIs. It has turned out that the
signal mechanism provides a way to implement the
needed APIs with the pthread Library. The signal
provides a way for one thread or process to notify a
thread or process (possibly itself) of an event. The
signal does not carry information other than which
signal was sent. Threads expecting signals can desig-
nate handler functions that are called when a signal is
sent to them. Upon arrival of a signal at a thread, the

KAL (Kernel Abstraction Layer)

TMOSM-Main

Thread
Mgt Events Timers Global

Time
Heap

Memory

OS Kernel

Comm
Socket

Error
Rept

Figure 4. The Kernel Adaptation Layer

normal flow of the thread is interrupted and the control
jumps to the signal handler immediately. When the
handler finishes, the execution control of the thread
normally resumes at the point where it left off before
the signal.

If there is a blocking call inside the signal handler,
the thread will then be blocked and can not continue.
The suspend/resume functionality in KAL/Linux is
implemented by making use of this feature. For this
purpose, two user signals, SIGUSR1 and SIGUSR2 are
used. A signal handler for SIGUSR1 is attached to
each thread. Inside this signal handler, the thread
makes a blocking system call sigwait (SIGUSR2) to
suspend itself until another signal SIGUSR2 arrives.
Hence, if a signal SIGUSR1 is sent to one thread, the
thread will be blocked inside the SIGUSR1 handler.
When a signal SIGUSR2 is sent to the same thread, the
thread is awakened and resumes its execution. These
procedures for suspending and resuming a thread are
depicted in Figure 5.

4.2. Scheduling
TMOSM is a middleware system that manages

thread scheduling and communications scheduling,
some parts in indirect manners. Since it runs above the
OS kernel, it relies on kernel services to achieve con-
text switching among the threads and also the services
of directly interfacing with hardware resources, but
otherwise needs the OS to stay out of the way.

Linux provides basic disciplines for thread sched-
uling. There are three preemptive scheduling policies
for threads: SCHED_FIFO, SCHED_RR and
SCHED_OTHER. The SCHED_FIFO and
SCHED_RR are priority-based scheduling policies. As
implied by the names, the difference between
SCHED_FIFO and SCHED_RR is in that for the
threads with the same priority the former uses the first-
in first-out ordering while the latter uses the round
robin ordering. The thread priority range for these two
policies is from 0 to 99. If the scheduling policy of
one thread is set to be one of these two policies, the
priority of the thread remains to be fixed unless it is
changed by use of the APIs for priority setting.
SCHED_OTHER is the default time-sharing scheduler
policy used by most processes. The priority of one
thread with this scheduling policy is dynamically ad-
justed based on program behaviors. In principle, the
initial priority for a thread with SCHED_OTHER pol-
icy can be set between 100 and 140.

In order to ensure timely executions of TMOSM
threads, the scheduling policy for each of them is set to
SCHED_RR. Again, the priority of the super-thread,
WTST is set to the highest one to avoid disturbances.

4.3. Events and the WOMS mechanism
TMOSM requires a mechanism which can be

viewed as an extension of sigwait() illustrated in Fig-
ure 4. The needed mechanism can be called the wait-
for-one-of-multiple-signals (WOMS) mechanism.
The sigwait() in Linux is inadequate in several re-
spects. First, only two signals are available for use by
applications. Second, when two signals arrive at a
thread at nearly the same time, the earlier signal gets
overwritten by the later. Real-time signals were intro-
duced in recent versions of the Linux kernel, but they
appeared to be immature for critical usage such as this.

The WOMS mechanism was simulated by use of
pipes and the select() system call. We call the signals
handled by the WOMS mechanism events to distin-
guish them from the signals handled by sigwait().
When a thread needs to wait for an event, it calls se-
lect() to wait for an event notice from a pipe. When
another thread needs to “set the event”, i.e., send the
signal, it writes an event notice into the pipe. This
approach ensures that the event notices are not lost
even if multiple events are set nearly at the same time.

The procedures of WaitForEvent() and SetEvent()
of WOMS are shown in Figure 6.

4.4. Heap memory management
Windows provides mechanisms by which threads

can allocate memory from private heaps, thus eliminat-
ing the locking and delays encountered when using a
shared heap. The KAL was originally designed with
this capability in mind. Linux does not inherently pro-
vide such capabilities and thus in our adaptation ap-

Normal Flow
of a thread

Signal Handler

S1. A SIGUSR1 signal (typically,
from WTST) is received

S2. Jump to
the signal
handler

S3. sigwait
(SIGUSR2)

R1. A SIGUSR2 signal
(typically, from
WTST) is received

Blocked

Blocked

R3. Continue
the normal
control of
the thread

S1, S2, S3: Suspension of the target thread
R1, R2, R3: Reactivation of the target thread

…

R2.
Unblocked
& return

Figure 5. Suspending and
reactivating a thread

proach, the global heap is acquired by the TMOSM
Main Layer through the KAL from the Linux kernel
and then the private heap behavior is emulated by a
memory manager in the Main Layer. Specialized
heaps are allocated from the global heap and then ob-
jects (data created to support execution of TMOs) are
allocated from those specialized heaps by the memory
manager in the Main Layer. This means that much of
the contention can be avoided and good performance is
maintained.

5. Performance analysis of
TMOSM/Linux

One of the most timing-critical distributed activi-
ties in a TMO system is the synchronization of the
global clock via network messages over the LAN [10].
In this activity, TMOSM instances on different nodes
exchange time synchronization messages in a manner
similar to the Network Time Protocol (NTP) [11].
TMOSM achieves higher precision than NTP’s normal
accuracy (1-2 milliseconds) because it is tailored for
LAN environments and does not need to handle the
long, unpredictable latencies of the Internet and also
because it periodically prepares the system in a special
mode for minimal-interference exchanges of clock-
resynchronization messages. Since the clock synchro-
nization operation involves most aspects of TMOSM,
from message passing to scheduling to event handling,
it is an illuminating benchmark of TMOSM/Linux
performance.

Another important performance measurement is
the application thread switch time. TMOSM uses a
separate thread for each TMO method execution.
TMOSM/Linux requires the use of signals and thread
self-suspending rather than the external thread suspen-
sion and resumption provided by Windows. There-
fore, the expectation is that the Linux version will have
slower application thread switch times because of the

larger number of kernel/user mode transitions and their
associated performance penalties.

5.1. Experimental Setup
The global time synchronization experiments used

a network of three machines connected with 100
Mbit/second switched Ethernet. The machines’ CPU
characteristics are listed in Table 1, and each has
512MB of RAM. The context switch time
measurements were performed on Machine 1.

Table 1. Experimental system configuration

Machine
Processor

Type
CPU
Speed

1 Pentium 4 1.8 GHz
2 Pentium III 600 MHz
3 Pentium III 667 MHz

5.2. Results
Table 2 shows the global clock sync results when

Machines 2 and 3 synchronize with Machine 1. The
worst-case clock deviation of about 300 microseconds
is easily sufficient for real-time systems that require
millisecond precision. The average case from more
than 1000 measurements is close to 100 microseconds,
thus the clocks are well synchronized for a millisec-
ond-precision system. Figure 7 shows the variance in
measurements for Machine 2, and while there are some
outliers, the bulk of the measurements are very near
the average case.

Table 2. Clock sync results

Machine
Average

Sync
Max
Sync

2 110 µsecs 253 µsecs
3 128 µsecs 307 µsecs

TMOSM/XP shows similar results for the clock

synchronization measurements. The average clock
deviation is 109 microseconds with the worst case of
326 microseconds as shown in Figure 8. Therefore,
the magnitude of clock deviation is roughly the same
for the Linux and Windows versions of TMOSM. In
both cases the vast majority of the synchronization
measurements are near the average.

The slight performance difference between two
platforms can be attributed to several factors, e.g., dif-
ferent running processes / threads tied to the kernels
and different networking architectures (INET vs.
NDIS), which introduce different communication jit-
ters at the software level and affect the clock synchro-
nization precision.

Select(); // wait for event
data from one pipe.
Blocked here

Read a byte from the pipe
to consume the event

WaitForEvent ()

Write a
byte into
the pipe Unblock

SetEvent ()

Figure 6. WaitForEvent() and
SetEvent() of WOMS

The context switch measurements in Table 3 show
that the TMOSM/Linux signal-based approach takes
somewhat more time to switch between application
threads than the Windows version does. This is ex-
pected because of the sequence of actions required for
the thread switch. First, WTST sends a signal to the
running thread to cause it to suspend itself, and then
WTST sends a signal to the next thread to cause it to
resume. Each signaling call for suspending an appli-
cation thread requires a switch from user mode to ker-
nel mode and back, which is expensive on modern
processors with deep pipelines such as Pentium 4. The
average of more than 11,000 measurements is 51 mi-
croseconds for Linux, while the TMOSM/XP takes
only 30 microseconds. Even the worst-case time of
roughly 100 microseconds easily allows application
thread management with timing precision far better
than the millisecond precision. Figure 9 shows that the
vast majority of thread switch times are close to the
average, while very few are significantly worse.

Table 3. Thread switch time
TMOSM/KAL
version

Average
(µsecs)

Max
(µsecs)

Linux 51 104
Windows 30 86

6. Conclusion

This paper shows that the powerful
TMO Support Middleware, which pro-
vides execution support for to distributed
RT application systems composed as net-
works of high-level RT DC objects, was
designed to possess a high degree of
portability in that porting between Linux
platforms and Windows platforms has

become a relatively easy task. TMOSM provides pre-
cise user-level scheduling, so it essentially takes over
the target machine and schedules the execution of user
threads and system operations so that critical deadlines
may be met. Because of this, TMOSM, more specifi-
cally, its KAL, requires significant and detailed inter-
action and support from the underlying OS kernel.

Windows and Linux provide significantly differ-
ent thread support models, so much of the porting ef-
fort involved adapting the KAL to the Linux threading
approach. Because TMOSM requires a mechanism to
allow one thread to suspend and resume another
thread, nested signal operations are used to emulate
this functionality. Linux pipes are used to implement
reliable ordered event channels with powerful recep-
tion/waiting options. Other KAL features required
similar unconventional adaptation techniques.

The performance results show that the Linux ver-
sion of TMOSM performs well and will easily support
millisecond-precision RT computing application sys-
tems on moderate commodity hardware. This will

allow much wider distribution options
and flexibility for TMO and its associated
middleware to the distributed and em-
bedded computing system communities.
It will also provide an initial step towards
running TMOs on many current-
generation cluster computers with high
performance interfaces.
Acknowledgment: The work reported
here was supported in part by the NSF
under Grant Numbers 02-04050 (NGS) and
03-26606 (ITR), in part by SKKU under
Contract Number M2004A−SKKU−UCI,
and in part by ETRI. No part of this pa-
per represents the views and opinions of
any of the sponsors mentioned above.

 Clock Sync Precision (between Machine 2 and Machine 1 in Linux Environment)

-300

-250

-200

-150

-100

-50

0

50

0 200 400 600 800 1000 1200

Iteration

M
ic

ro
se

co
nd

s

Figure 7. Clock sync precision in Linux environment

 Clock Sync Precision (between Machine 2 and Machine 1 in Windows
Environment)

-150

-100

-50

0

50

100

150

200

250

300

350

0 200 400 600 800 1000 1200

Iteration

M
ic

ro
se

co
nd

s

Figure 8. Clock sync precision in Windows
environment

References

[1] K. H. Kim, "APIs for Real-Time Distributed Object
Programming," IEEE Computer, pp. 72-80, June 2000.

[2] K. H. Kim, "Object Structures for Real-Time Systems
and Simulators," IEEE Computer, vol. 30, no. 8, pp. 62-
70, August 1997.

[3] K. H. Kim, "Commanding and Reactive Control of Pe-
ripherals in the TMO Programming Scheme," in Pro-
ceedings of 5th IEEE CS Int'l Symp. on OO Real-time
distributed Computing (ISORC 2002), Crystal City, VA
2002.

[4] K. H. Kim, "Basic Program Structures for Avoiding
Priority Inversions," in Proceedings of IEEE CS 6th Int'l
Symposium on Object-oriented Real-time distributed
Computing (ISORC 2003), Hakodate, Japan, 2003.

[5] K. H. Kim, M. Ishida, and J. Liu, "An Efficient Mid-
dleware Architecture Supporting Time-Triggered Mes-
sage-Triggered Objects and an NT-Based Implementa-
tion," in Proceedings of 2nd IEEE CS Int'l Symp. on
Object-Oriented Real-time Distributed Computing
(ISORC *99), St. Malo, France 1999.

[6] K. H. Kim, J. Q. Liu, H. Miyazaki, and E. H. Shokri,
"CORBA Service Middleware Enabling High-Level
High-Precision Real-Time Distributed Object Pro-
gramming," Computer System Science & Engineering,
vol. 17, no. 2, pp. 77-84, March 2002.

[7] H. J. Kim, S. H. Park, and M. H. Kim, "TMO-Linux: A

Linux-Based Real-Time Operating System Supporting
Execution of TMOs," in Proceedings of 5th IEEE CS
Int'l Symp. on OO Real-time distributed Computing
(ISORC 2002), Washington, DC, 2002.

[8] K. H. Kim and J. Q. Liu, "Going Beyond Deadline-
Driven Low-Level Scheduling in Distributed Real-Time
Computing Systems," Design and Analysis of Distrib-
uted Embedded Systems (Proc. IFIP 17th World Com-
puter Congress, TC10 Stream, Montreal, Can., Aug
2002), B. Kleinjohann et al. eds., pp. 205-215, 2002.

[9] K. H. Kim, J. Q. Liu, M. H., and E. H. Shokri,
"TMOES: A CORBA Service Middleware Enabling
High-Level Real-Time Object Programming," in Pro-
ceedings of IEEE CS 5th Int'l Symp. on Autonomous
Decentralized Systems (ISADS 2001), Dallas, TX,
2001.

[10] K. H. Kim, C. S. Im, and P. Athreya, "Realization of a
Distributed OS Component for Internal Clock Synchro-
nization in a LAN Environment," in Proceedings of 5th
IEEE CS Int'l Symp. on OO Real-time Distributed
Computing (ISORC 2002), Crystal City, VA, 2002.

[11] D. L. Mills, "Internet Time Synchronization: The Net-
work Time Protocol," IEEE Transactions on Communi-
cations, vol. 39, no. 10, pp. 1482-1493, Oct. 1991.

 Context Switch Overhead (in Linux)

0

20

40

60

80

100

120

0 1000 2000 3000 4000 5000 6000 7000 8000

Iteration

M
ic

ro
se

co
nd

s

Context Switch Overhead (in Windows)

0

10

20

30

40

50

60

70

80

90

100

0 1000 2000 3000 4000 5000 6000 7000 8000

Iteration

M
ic

ro
se

co
nd

s

Figure 9. Application thread switch time

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

